miércoles, 11 de mayo de 2011

Polimeros

Los polímeros se producen por la unión de cientos de miles de moléculas pequeñas denominadas monómeros que constituyen enormes cadenas de las formas más diversas. Algunas parecen fideos, otras tienen ramificaciones. Algunas más se asemejan a las escaleras de mano y otras son como redes tridimensionales.
Existen polímeros naturales de gran significación comercial como el algodón, formado por fibras de celulosas.
Propiedades físicas de los polímeros.
Estudios de difracción de rayos X sobre muestras de polietileno comercial, muestran que este material, constituido por moléculas que pueden contener desde 1.000 hasta 150.000 grupos CH2 – CH2 presentan regiones con un cierto ordenamiento cristalino, y otras donde se evidencia un carácter amorfo: a éstas últimas se les considera defectos del cristal. En este caso las fuerzas responsables del ordenamiento cuasicristalino, son las llamadas fuerzas de van der Waals. En otros casos (nylon 66) la responsabilidad del ordenamiento recae en los enlaces de H. La temperatura tiene mucha importancia en relación al comportamiento de los polímeros. A temperaturas más bajas los polímeros se vuelven más duros y con ciertas características vítreas debido a la pérdida de movimiento relativo entre las cadenas que forman el material. La temperatura en la cual funden las zonas cristalinas se llama temperatura de fusión (Tf) Otra temperatura importante es la de descomposición y es conveniente que sea bastante superior a Tf.

 Clasificación

Existen varias formas posibles de clasificar los polímeros, sin que sean excluyentes entre sí.
Según su origen

Esteres

Los ésteres son compuestos orgánicos en los cuales un grupo orgánico (simbolizado por R' )reemplaza a un átomo de hidrógeno (o más de uno) en un ácido oxigenado. Un oxoácido es un ácido inorgánico cuyas moléculas poseen un grupo hidroxilo (–OH) desde el cual el hidrógeno (H) puede disociarse como un ión hidrógeno, hidrón o comúnmente protón, (H+). Etimológicamente, la palabra "éster" proviene del alemán Essig-Äther (éter de vinagre), como se llamaba antiguamente al acetato de etilo.
En los ésteres más comunes el ácido en cuestión es un ácido carboxílico. Por ejemplo, si el ácido es el ácido acético, el éster es denominado como acetato. Los ésteres también se pueden formar con ácidos inorgánicos, como el ácido carbónico (origina ésteres carbónicos), el ácido fosfórico (ésteres fosfóricos) o el ácido sulfúrico. Por ejemplo, el sulfato de dimetilo es un éster, a veces llamado "éster dimetílico del ácido sulfúrico".
NOMENCLATURA DE ESTERES
Los ésteres proceden de condensar ácidos con alcoholes y se nombran como sales del ácido del que provienen. La nomenclatura IUPAC cambia la terminación -oico del ácido por -oato, terminando con el nombre del grupo alquilo unido al oxígeno.
 
Los esteres son grupos prioritarios frente a aminas, alcoholes, cetonas, aldehídos, nitrilos, amidas y haluros de alcanoilo. Estos grupos se nombran como sustituyentes siendo el éster el grupo funcional.

Ácidos carboxílicos y anhídridos tienen prioridad sobre los ésteres, que pasan a nombrarse como sustituyentes (alcoxicarbonil......)

Cuando el grupo éster va unido a un ciclo, se nombra el ciclo como cadena principal y se emplea la terminación -carboxilato de alquilo para nombrar el éster.


Grupos Funcionales. Esteres.

 
Atomos Involucrados
Suffijos
-oato
Prefijos
-
Posición en la cadena
Solo al final
Fórmula General 
CnH2nO2
Nombre de la familia 
ester
  • Se cambia la terminación o de los alcanos por la teminación -oato de los ésteres..
  • El caso de los ésteres consiste en dos cadenas separadas por un oxígeno. Cada una de estas cadenas debe de nombrarse por separado y el nombre de los ésteres siempre consiste en dos palabras separadas del tipo alcanoato de alquilo. La parte alquílica del nombre se da a la cadena que no contiene el grupo carbonilo. La parte del alcanoato se da a la cadena que tiene el grupo carbonilo. Este procedimiento se utiliza sin importar el tamaño de la cadena. La posición del grupo carbonilo es la que determina cual es la cadena del alcanoato.
  • Debido a que el grupo carbonilo en los ésteres debe de estar al final de la cadena del alcanoato no se utiliza número localizador
  • La cadena que se encuentra del lado del oxígeno puede estar unida por cualquiera de sus átomos de carbono por lo que en este caso si no está unida por el carbono terminal se debe de usar el número localizador.
butanoato de 2- heptilo.

lunes, 14 de febrero de 2011

ESTRUCTURA DE LEWIS





Diagrama de algunas estructura de Lewis de moléculas y átomos.La Estructura de Lewis, o puede ser llamada diagrama de punto, modelo de Lewis o ALDA representación de Lewis, es una representación gráfica que muestra los enlaces entre los átomos de una molécula y los pares de electrones solitarios que puedan existir. Diagrama de Lewis se puede usar tanto para representar moléculas formadas por la unión de sus átomos mediante enlace covalente como complejos de coordinación. La estructura de Lewis fue propuesta por Gilbert Lewis, quien lo introdujo por primera vez en 1915 en su artículo La molécula y el átomo.


Las estructuras de Lewis muestran los diferentes átomos de una determinada molécula usando su símbolo químico y líneas que se trazan entre los átomos que se unen entre sí. En ocasiones, para representar cada enlace, se usan pares de puntos en vez de líneas. Los electrones desapartados (los que no participan en los enlaces) se representan mediante una línea o con un par de puntos, y se colocan alrededor de los átomos a los que pertenece.















 



REGLA DEL OCTETO

La regla del octeto dice que la tendencia de los átomos de los elementos del sistema periódico, es completar sus últimos niveles de energía con una cantidad de 8 electrones tal que adquiere una configuración semejante a la de un gas noble, ubicados al extremo derecho de la tabla periódica y son inertes, o sea que es muy difícil que reaccionen con algún otro elemento pese a que son elementos electroquímicamente estables, ya que cumplen con la ley de Lewis, o regla del octeto. Esta regla es aplicable para la creación de enlaces entre los átomos.


Limitaciones

Cabe observar que, contradictorio a la regla del octeto, los átomos de los elementos que se encuentran después del segundo periodo de la tabla periódica, pueden acomodar más de ocho electrones en su capa externa. Ejemplos de esto son los compuestos P Cl 5 y SF6.
Algunas moléculas o iones sumamente reactivos tienen átomos con menos de ocho electrones en su capa externa. Un ejemplo es el trifluoruro de boro (BF3). En la molécula de BF3 el átomo de boro central sólo tiene seis electrones a su alrededor  Antes de que se puedan escribir algunas estructuras de Lewis, se debe conocer la forma en que los átomos están unidos entre sí. Considérese por ejemplo el ácido nítrico. Aunque la fórmula del ácido nítrico con frecuencia se representa como HNO3, en realidad el hidrógeno está unido a un oxígeno, no al nitrógeno. La estructura es HONO2 y no HNO3.

TIPOS DE ENLACE

Enlace iónico


El enlace iónico consiste en la atracción electrostática entre átomos con cargas eléctricas de signo contrario. Este tipo de enlace se establece entre átomos de elementos poco electronegativos con los de elementos muy electronegativos. Es necesario que uno de los elementos pueda ganar electrones y el otro perderlo, y como se ha dicho anteriormente este tipo de enlace se suele producir entre un no metal (electronegativo) y un metal (electropositivo).



Un ejemplo de sustancia con enlace iónico es el cloruro sódico. En su formación tiene lugar la transferencia de un electrón del átomo de sodio al átomo de cloro. Las configuraciones electrónicas de estos elementos después del proceso de ionización son muy importantes, ya que lo dos han conseguido la configuración externa correspondiente a los gases nobles, ganando los átomos en estabilidad. Se produce una transferencia electrónica, cuyo déficit se cubre sobradamente con la energía que se libera al agruparse los iones formados en una red cristalina que, en el caso del cloruro sódico, es una red cúbica en la que en los vértices del paralelepípedo fundamental alternan iones Cl- y Na+. De esta forma cada ion Cl- queda rodeado de seis iones Na+ y recíprocamente. Se llama índice de coordinación al número de iones de signo contrario que rodean a uno determinado en una red cristalina. En el caso del NaCl, el índice de coordinación es 6 para ambos



Propiedades de los compuestos iónicos

Las sustancias iónicas están constituidas por iones ordenados en el retículo cristalino; las fuerzas que mantienen esta ordenación son fuerzas de Coulomb, muy intensas. Esto hace que las sustancias iónicas sean sólidos cristalinos con puntos de fusión elevados. En efecto, para fundir un cristal iónico hay que deshacer la red cristalina, separar los iones. El aporte de energía necesario para la fusión, en forma de energía térmica, ha de igualar al de energía reticular, que es la energía desprendida en la formación de un mol de compuesto iónico sólido a partir de los correspondientes iones en estado gaseoso. Esto hace que haya una relación entre energía reticular y punto de fusión, siendo éste tanto más elevado cuanto mayor es el valor de aquella.



Por otra parte, la aparición de fuerzas repulsivas muy intensas cuando dos iones se aproximan a distancias inferiores a la distancia reticular (distancia en la que quedan en la red dos iones de signo contrario), hace que los cristales iónicos sean muy poco compresibles. Hay sustancias cuyas moléculas, si bien son eléctricamente neutras, mantienen una separación de cargas. Esto se debe a que no hay coincidencia entre el centro de gravedad de las cargas positivas y el de las negativas: la molécula es un dipolo, es decir, un conjunto de dos cargas iguales en valor absoluto pero de distinto signo, separadas a una cierta distancia. Los dipolos se caracterizan por su momento; producto del valor absoluto de una de las cargas por la distancia que las separa. Un de estas sustancias polares es, por ejemplo el agua.



Cuando un compuesto iónico se introduce en un disolvente polar, los iones de la superficie de cristal provocan a su alrededor una orientación de las moléculas dipolares, que enfrentan hacia cada ion sus extremos con carga opuesta a la del mismo. En este proceso de orientación se libera una energía que, si supera a la energía reticular, arranca al ion de la red. Una vez arrancado, el ion se rodea de moléculas de disolvente: queda solvatado. Las moléculas de disolvente alrededor de los iones se comportan como capas protectoras que impiden la reagrupación de los mismos. Todo esto hace que, en general, los compuestos iónicos sean solubles en disolventes polares, aunque dependiendo siempre la solubilidad del valor de la energía reticular y del momento dipolar del disolvente. Así, un compuesto como el NaCl, es muy soluble en disolventes como el agua, y un compuesto como el sulfato de bario, con alta energía reticular, no es soluble en los disolventes de momento dipolar muy elevado.



Enlace covalente

Lewis expuso la teoría de que todos los elementos tienen tendencia a conseguir configuración electrónica de gas noble (8 electrones en la última capa). Elementos situados a la derecha de la tabla periódica ( no metales ) consiguen dicha configuración por captura de electrones; elementos situados a la izquierda y en el centro de la tabla ( metales ), la consiguen por pérdida de electrones. De esta forma la combinación de un metal con un no metal se hace por enlace iónico; pero la combinación de no metales entre sí no puede tener lugar mediante este proceso de transferencia de electrones; por lo que Lewis supuso que debían compartirlos.



Es posible también la formación de enlaces múltiples, o sea, la compartición de más de un par de electrones por una pareja de átomos. En otros casos, el par compartido es aportado por sólo uno de los átomos, formándose entonces un enlace que se llama coordinado o dativo. Se han encontrado compuestos covalentes en donde no se cumple la regla. Por ejemplo, en BCl3, el átomo de boro tiene seis electrones en la última capa, y en SF6, el átomo de azufre consigue hasta doce electrones. Esto hace que actualmente se piense que lo característico del enlace covalente es la formación de pares electrónicos compartidos, independientemente de su número.



Fuerzas intermoleculares

A diferencia que sucede con los compuestos iónicos, en las sustancias covalentes existen moléculas individualizadas. Entre estas moléculas se dan fuerzas de cohesión o de Van der Waals, que debido a su debilidad, no pueden considerarse ya como fuerzas de enlace. Hay varios tipos de interacciones: Fuerzas de orientación (aparecen entre moléculas con momento dipolar diferente), fuerzas de inducción (ion o dipolo permanente producen en una molécula no polar una separación de cargas por el fenómeno de inducción electrostática) y fuerzas de dispersión (aparecen en tres moléculas no polares).



Propiedades de los compuestos covalentes

Las fuerzas de Van der Waals pueden llegar a mantener ordenaciones cristalinas, pero los puntos de fusión de las sustancias covalentes son siempre bajos, ya que la agitación térmica domina, ya a temperaturas bajas, sobre las débiles fuerzas de cohesión. La mayor parte de las sustancias covalentes, a temperatura ambiente, son gases o líquidos de punto de ebullición bajo (por ejemplo el agua). En cuanto a la solubilidad, puede decirse que, en general, las sustancias covalentes son solubles en disolventes no polares y no lo son en disolventes polares. Se conocen algunos sólidos covalentes prácticamente infusibles e insolubles, que son excepción al comportamiento general descrito. Un ejemplo de ellos es el diamante. La gran estabilidad de estas redes cristalinas se debe a que los átomos que las forman están unidos entre sí mediante enlaces covalentes. Para deshacer la red es necesario romper estos enlaces, los cual consume enormes cantidades de energía



Electrovalencia y covalencia

Teniendo presenta las teorías de los enlaces iónicos y covalentes, es posible deducir la valencia de un elemento cualquiera a partir de su configuración electrónica.



La electrovalencia, valencia en la formación de compuestos iónicos, es el número de electrones que el átomo tiene que ganar o perder para conseguir la configuración de los gases nobles.

La covalencia, número de enlaces covalentes que puede formar un átomo, es el número de electrones desapareados que tiene dicho átomo. Hay que tener presente que un átomo puede desaparecer sus electrones al máximo siempre que para ello no haya de pasar ningún electrón a un nivel energético superior.

ENLACE METÁLICO

Los elementos metálicos sin combinar forman redes cristalinas con elevado índice de coordinación. Hay tres tipos de red cristalina metálica: cúbica centrada en las caras, con coordinación doce; cúbica centrada en el cuerpo, con coordinación ocho, y hexagonal compacta, con coordinación doce. Sin embargo, el número de electrones de valencia de cualquier átomo metálico es pequeño, en todo caso inferior al número de átomos que rodean a un dado, por lo cual no es posible suponer el establecimiento de tantos enlaces covalentes.



En el enlace metálico, los átomos se transforman en iones y electrones, en lugar de pasar a un átomo adyacente, se desplazan alrededor de muchos átomos. Intuitivamente, la red cristalina metálica puede considerarse formada por una serie de átomos alrededor de los cuales los electrones sueltos forman una nube que mantiene unido al conjunto.



POLARIDAD DE LOS ENLACES

En el caso de moléculas heteronucleares, uno de los átomos tendrá mayor electronegatividad que el otro y, en consecuencia, atraerá mas fuertemente hacia sí al par electrónico compartido. El resultado es un desplazamiento de la carga negativa hacia el átomo más electronegativo, quedando entonces el otro con un ligero exceso de carga positiva. Por ejemplo, en la molécula de HCl la mayor electronegatividad del cloro hace que sobre éste aparezca una fracción de carga negativa, mientras que sobre el hidrógeno aparece una positiva de igual valor absoluto. Resulta así una molécula polar, con un enlace intermedio entre el covalente y el iónico.

viernes, 11 de febrero de 2011

ALQUINOS

Los alquinos son hidrocarburos que contienen enlaces triples carbono-carbono. La fórmula molecular general para alquinos acíclicos es CnH2n-2 y su grado de insaturación es dos. El acetileno o etino es el alquino más simple, fue descubierto por Berthelot en 1862.

NOMENCLATURA DE LOS ALQUINOS

Regla 1. Los alquinos responden a la fórmula CnH2n-2 y se nombran sustituyendo el sufijo -ano del alca-no con igual número de carbonos por -ino.


 


Regla 2.  Se elige como cadena principal la de mayor longitud que contiene el triple enlace.  La numera-ción debe otorgar los menores localizadores al triple enlace.


 

Regla 3. Cuando la molécula tiene más de un triple enlace, se toma como principal la cadena que contie-ne el mayor número de enlaces triples y se numera desde el extremo más cercano a uno de los enlaces múltiples, terminando el nombre en -diino, triino, etc.


 
Regla 4. Si el hidrocarburo contiene dobles y triples enlaces, se procede del modo siguiente:
1. Se toma como cadena principal la que contiene al mayor número posible de enlaces múltiples, prescindiendo de si son dobles o triples.
2. Se numera para que los enlaces en conjunto tomen los localizadores más bajos.  Si hay un doble enlace y un triple a la misma distancia de los extremos tiene preferencia el doble.
3. Si el compuesto tiene un doble enlace y un triple se termina el nombre en -eno-ino; si tiene dos dobles y un triple, -dieno-ino;  con dos triples y un doble la terminación es, -eno-diino


 
 

jueves, 10 de febrero de 2011

GRUPOS FUNCIONALES

Grupos Funcionales
R = cadena alifática con cualquier número de carbonos
Nombre del Grupo Funcional
  Estructura General
 Estructura Ejemplo
 Nombre
Gráfico
  Alcano
CH3CH2CH3
 propano

 Alqueno
 CH2=CHCH3
  propeno
 Alquino
CH=CCH3
  propino
Alcohol
R-OH
CH3CH2CH2OH
 propanol
 Éter
  R-O-R
CH3CH2O-CH2CH3
 dietil éter
Aldehído
 propanal
Cetona
propanona
o
acetona
(o metil cetona -dimetil cetona es redundante-)
 Acido
etanoico
o
ácido acético
 Ester
 
etanoato de metilo
o acetato de metilo


 Amina
 R-NH2
or
R-NH-R
 CH3CH2CH2NH2
 propilamina
 Amida
  metil etanamida
o metil etil amida

miércoles, 19 de enero de 2011

MODELO ATOMICO DE BOHR

La incapacidad de las leyes clásicas –mecánicas o electromagnéticas– para interpretar los espectros emitidos por los átomos incandescentes, ¿no era acaso un índice de la invalidez de esas leyes en el interior del átomo? Plantear la cuestión era afirmar el hecho. El modelo de Rutherford había asimilado el átomo a un sistema planetario; Bohr tuvo el coraje de introducir el cuanto elemental de Planck, la constante h, y adoptar postulados cuya justificación sería su extraordinario éxito. Cualquier órbita planetaria es concebible en torno del Sol, pero los electrones planetarios en tomo del núcleo –demandó Bohr– solamente pueden recorrer determinadas órbitas, cuyos radios son entre ellos como los cuadrados de los números enteros. Sólo están permitidas las órbitas que satisfacen como condición que el momento de la cantidad de movimiento del electrón con respecto al núcleo, m v r, multiplicado por 2p, sea igual a un número entero de cuanto h, 2h, 3h, y así sucesivamente. Las demás trayectorias quedarán vedadas al electrón, que solamente puede elegir las prescritas por la condición cuántica de Bohr.
atombohr
Bohr para desarrollar su modelo atómico utilizó el átomo de hidrógeno. Describió el átomo de hidrógeno con un protón en el núcleo, y girando a su alrededor un electrón. En éste modelo los electrones giran en órbitas circulares alrededor del núcleo; ocupando la órbita de menor energía posible, o sea la órbita más cercana posible al núcleo.

Cada órbita se corresponde con un nivel energético que recibe el nombre de «número cuántico principal», se representa con la letra "n"; y  toma valores desde 1 hasta 7.
De acuerdo al número cuántico principal calculó las distancias a las cuales se hallaba cada una de las órbitas  permitidas en el átomo de hidrógeno, respecto del núcleo.

Representación de las órbitas

n

distancia

orbitas1.jpg (13774 bytes)

1

0,53 Å

2

2,12 Å

3

4,76 Å

4

8,46 Å

5

13,22 Å

6

19,05 Å

7

25,93 Å


Nota: Con Å se designa la unidad de longitud Angstrom (en el sistema SI) y equivale a 1.0x10-10 metros.
El electrón puede acceder a un nivel de energía superior pero para ello necesita "absorber" energía. Cuando vuelve a su nivel de energía original,  el electrón necesita emitir  la energía absorbida ( por ejemplo en forma de radiación).

Por su parte, el electrón circula sobre esas órbitas, no radia ni pierde energía, de manera que su estado permanece estable. Cada órbita corresponde a un nivel determinado de energía, siendo el estado estable de menor energía la trayectoria más próximo al núcleo. Si el átomo recibe luz de una fuente exterior, la energía absorbida llevará al electrón a una órbita más alejada del núcleo. En el interior atómico, ganancia o pérdida de energía se traducen, pues, por saltos electrónicos que se efectúan, en el primer caso, hacia los niveles superiores; en el segundo, hacia los inferiores. El sentido de la ley Balmer – Ritz se aclara súbitamente: es la diferencia entre la energía que caracteriza la órbita de partida y la de llegada, la que es irradiada por el átomo. Al dividir por h las energías de las órbitas estables del átomo de hidrógeno, se obtienen los términos espectrales, y el principio de combinación –misterioso cuando Ritz lo formulara– se encuentra interpretado. También la constante de Rydberg –medida desde hace mucho tiempo, pero refractaria a toda deducción teórica– se vuelve, a priori, calculable: la masa y carga del electrón y la constante de Planck conducen a su valor numérico.
En el modelo de átomo de Bohor, cada órbita electrónica está caracterizada por un número cuántico, siendo la más próxima al núcleo aquélla con un cuanto, la órbita K, seguida por la de dos quantum , llamada L, y así sucesivamente. Si el electrón salta de una de las órbitas exteriores a la órbita L, el átomo irradia las líneas espectrales de la serie Balmer, que cruzan la parte visible del espectro del hidrógeno. Según la proveniencia del electrón saltarín, las cantidades de energía irradiadas, y con ellas la frecuencia (color) de la línea, serán diferentes: la línea roja de esta serie es el producto de un salto procedente de la órbita M; la línea azul, de uno desde la órbita N, y así sucesivamente. De manera análoga, otras series reciben también su explicación: la de Lyman, en el ultravioleta, corresponde a saltos electrónicos a la órbita K; la de Parchen , en el infrarrojo, a saltos a la órbita M. En todos los casos, las series están determinadas por la órbita de llegada; las líneas dentro de una serie, por la órbita de partida del electrón saltarín.

Modelo atómico de Bohr

Bohr unió la idea de átomo nuclear de Rutherford con las ideas de una nueva rama de la Ciencia: la Física Cuántica. Así, en 1913 formuló una hipótesis sobre la estructura atómica en la que estableció tres postulados:
¤ El electrón no puede girar en cualquier órbita, sino sólo en un cierto número de órbitas estables. En el modelo de Rutherford se aceptaba un número infinito de órbitas.
¤ Cuando el electrón gira en estas órbitas no emite energía.
¤ Cuando un átomo estable sufre una interacción, como puede ser el imapacto de un electrón o el choque con otro átomo, uno de sus electrones puede pasar a otra órbita estable o ser arrancado del átomo.
 
El átomo de hidrógeno según el modelo atómico de Bohr
¤ El átomo de hidrógeno tiene un núcleo con un protón.
¤ El átomo de hidrógeno tiene un electrón que está girando en la primera órbita alrededor del núcleo. Esta órbita es la de menor energía.
¤ Si se le comunica energía a este electrón, saltará desde la primera órbita a otra de mayor energía. cuando regrese a la primera órbita emitirá energía en forma de radiación luminosa.
En la siguiente simulación puedes elegir la órbita de giro del electrón. Observa cómo las energías de las órbitas más exteriores son mayores que las de las órbitas más interiores. "r" es el radio de la órbita.




PARTICULAS SUBATOMICAS

Se le denomina partícula a un cuerpo dotado de masa, y del que se hace abstracción del tamaño y de la forma.
Una partícula subatómica es una partícula mas pequeña que un átomo, puede ser elemental o compuesta.
A principios del siglo XX, se realizo el descubrimiento de unas partículas subatómicas llamadas protón, electrón y neutron, estas están contenidas en el átomo.
Tal vez uno pueda preguntarse si estas partículas tan pequeñas pueden tener estructura; es interesarse darse cuenta de que si tienen estructura.
Para poder definir una partícula subatómica es necesario conocer las características de estas, las cuales describiremos a continuación.
Carga: La carga es una magnitud escalar (Solo se puede determinar su cantidad).
Spin: Movimiento de rotación sobre un eje imaginario.
Los científicos han desarrollado una teoría llamada El modelo Estándar que explica las diferentes moléculas y sus complejas interacciones con solo:
6 Quarks
6 Leptones
Las partículas subatómicas de las cuales se sabe su existencia son:
  • Bosón
  • Positrón
  • Electrón
  • Protón
  • Fermión
  • Neutrino
  • Hadrón
  • Neutrón
  • Leptón
  • Quark
  • Mesón
Las partículas están formadas por componentes atómicos como los electrones, protones y neutrones, (los protones y los neutrones son partículas compuestas), estas están formadas de quarks. Los Quarks se mantienen unidos por las partículas gluon que provocan una interacción en los quarks y son indirectamente responsables por mantener los protones y neutrones juntos en el núcleo atómico.

Bosón

El bosón es una partícula atómica o subatómica, de spin entero o nulo, que cumple los postulados de la estadística de Bose-Einstein e incumple el principio de exclusión de Paulli (establece que dos electrones no pueden ocupar el mismo estado energético). Son bosones las partículas alfa, los fotones y los nucleidos con un número par de nucleones.
El bosón recibe su nombre por Satyendra Nath Bose, un científico Bengali responsable de su descubrimiento. Debido a su spin, los bosones siguen la estadística Bose-Einstein, en donde cualquier número de bosones puede compartir el mismo estado cuantico. Los bosones no son realmente resistentes si se ubican en el mismo lugar, estos mismos, tienen momentos intrínsecos angulares, en unidades integrales de h/ (2 El hecho de que los bosones puedan ocupar un estado cuantico les permite comportarse de manera colectiva, y son responsables por el comportamiento de los lásers y el helio superfluito.

Fermión

Es una partícula perteneciente a una familia de partículas elementales caracterizada por su momento angular intrínseco o spin. Los fermiones son nombrados después de Enrico Fermi, en el modelo estándar, existen dos tipos de fermiones elementales, que son: Los quarks y los leptones. Según la teoría cuantica, el momento angular de las partículas solo puede adoptar determinados valores, que pueden ser múltiplos enteros de una determinada constante h (Constante de Planck) o múltiplos semientereos de esa misma constante. Los fermiones, entre los que se encuentran los electrones, los protones y los neutrones, tienen múltiplos semienteros de h, por ejemplo ±1/2h o ±3/2h. Los fermiones cumplen el principio de exclusión.
El nucleo de un átomo es un fermion o boson, dependiendo de si el número total de sus protones y neutrones es par o impar respectivamente. Recientemente, los científicos han descubierto que esto causa comportamiento muy extraño en ciertos átomos cuando son sometidos a condiciones inusuales, tal como el helio demasiado frió.

Quarks

El nombre genérico con que se designan los constituyentes de los hadrones. La teoría sobre los quarks se inicio a partir de los trabajos de Gell-Mann y Zweig (1966) y su existencia fue confirmada en 1977 (Por Fairbank y otros).
La física dedicada al estudio de la naturaleza fundamental de la materia ha formulado un modelo estándar, capaz de explicar una serie de hechos e incapaz de dar respuesta a otros. Este modelo se basa en la actualidad en la hipótesis de que la materia ordinaria esta formada por dos clases de partículas, los quarks (que se combinan para formar partículas mayores) y los leptones, además de que las fuerzas que actúan entre ellas se transmiten mediante una tercera clase de partículas llamadas bosones, que ya explicamos anteriormente. El spin de los quarks es de ½, hay seis tipos distintos de quarks que los físicos han denominado de la siguiente manera: up, down, charm, strange, top, y bottom además de los correspondientes antiquarks.
La carga eléctrica de los quarks es fraccionaria de la unidad fundamental de carga; así por ejemplo, el quark up tiene una carga fraccionaria igual a 2/3 de la unidad elemental.
Los quarks no se encuentran libres en la naturaleza sino formando hadrones, estos se dividen en dos tipos:
mesones: Formados por un quark y un antiquark
bariones: Formados por tres quarks
Además de las cargas ya mencionadas, los quarks tienen otra carga de color, que no tiene nada que ver con el color real de estas partículas, y que mantiene unidos a los quarks mediante la interacción fuerte, además de ser la responsable de la formación de estos hadrones. Esta interacción esta descrita por la cromo dinámica cuantica (QCD). Existen tres tipos de carga de color: roja, azul y verde. Los antiquarks presentan además cargas opuestas, antirroja, antiazul, y antiverde. Los quarks están unidos entre si mediante el intercambio de partículas virtuales mediadoras de la interacción fuerte: los gluones. Junto a los leptones, los quarks forman prácticamente toda la materia de la que estamos rodeados. El termino quark, fue propuesto por Murria Gell-Mann, sacado de una novela de James Joyce, Finegan’s wake, del verso Three Quarks for Mr. Mark.

Leptón

Nombre que recibe cada una de las partículas elementales de spin igual a +1/2 y masa inferior a la de los mesones. Los leptones son fermiones entre los que se establecen interacciones débiles, y solo interacciones electromagnéticas si poseen carga eléctrica. Además, los leptones con carga eléctrica se encuentran casi siempre unidos a un neutrino asociado.
Existen tres tipos de leptones: el electrón, el muon y el tau. Cada uno esta representado por un par de partículas. Una es una partícula masivamente cargada, que lleva el mismo nombre que su partícula, (Como el electrón). La otra es una partícula neutral casi sin masa llamada neutrino (tal como el electrón neutrino). Todas estas 6 partículas tienen antipartículas correspondientes (tales como el positrón o el electrón antineutrino). Todo los leptones cargados tienen una sola unidad de energía positiva o negativa (de acuerdo a si son partículas o antipartículas) y todos los neutrinos y antineutrinos tienen cero carga eléctrica. Los leptones cargados tienen 2 posibles giros de spin mientras que una sola helicidad es observada para los neutrinos (Todos los neutrinos son zurdos y los antineutrinos diestros). Los leptones obedecen a una simple relación conocida como la formula Koide. Cuando las partículas interactúan, generalmente el numero de leptones del mimo tipo (electrones y electrones neutrinos, muones y muones neutrinos, leptones tau y tau neutrinos) se mantienen igual. Este principio es conocido como la conservación del numero lepton.

Hadrones

El hadron es una partícula subatómica compuesta de quarks, caracterizada por relacionarse mediante interacciones fuertes. Aunque pueden manifestar también interacciones débiles y electromagnéticas, en los hadrones predominan las interacciones fuertes, que son las que mantienen la cohesión interna en el núcleo atómico. Estas partículas presentan dos categorías: los bariones formados por tres quarks, como el neutron y el protón y los mesones, formados por un quark y un antiquark, como el pion.
La mayoría de los hadrones pueden ser clasificados con el modelo quark que implica que todos los números cuanticos de bariones son derivados de aquellos de valencia quark.

Neutrino

Partícula nuclear elemental eléctricamente neutra y de masa muy inferior a la del electrón (posiblemente nula). El neutrino es un fermión; su espín es 1/2. Antes del descubrimiento del neutrino, parecía que en la emisión de electrones de la desintegración beta no se conservaban la energía, el momento y el espín totales del proceso. Para explicar esa incoherencia, el físico austriaco Wolfgang Pauli dedujo las propiedades del neutrino en 1931.
Al no tener carga y poseer una masa despreciable, el neutrino es extremadamente difícil de detectar; las investigaciones confirmaron sus peculiares propiedades a partir de la medida del retroceso que provoca en otras partículas. Billones de neutrinos atraviesan la Tierra cada segundo, y sólo una minúscula proporción de los mismos interacciona con alguna otra partícula. Los físicos estadounidenses Frederick Reines y Clyde Lorrain Cowan, hijo, obtuvieron pruebas concluyentes de su existencia en 1956.
La antipartícula del neutrino es emitida en los procesos de desintegración beta que producen electrones, mientras que los neutrinos se emiten junto con positrones en otras reacciones de desintegración beta. Algunos físicos conjeturan que en una extraña forma de radiactividad, llamada doble desintegración beta, dos neutrinos pueden, en ocasiones, fusionarse para formar una partícula a la que denominan "mayorón". Otro tipo de neutrino de alta energía, llamado neutrino muónico, es emitido junto con un muón cuando se desintegra un pión. Cuando un pión se desintegra, debe emitirse una partícula neutra en sentido opuesto al del muón para conservar el momento. La suposición inicial era que esa partícula era el mismo neutrino que conserva el momento en la desintegración beta. En 1962, sin embargo, las investigaciones demostraron que el neutrino que acompaña la desintegración de piones es de tipo diferente. También existe un tercer tipo de neutrino, el neutrino tau (y su antipartícula).
Actualmente, la posibilidad de que los neutrinos puedan oscilar entre una forma y otra resulta de gran interés. Hasta ahora, las pruebas en ese sentido son indirectas, pero de confirmarse sugerirían que el neutrino tiene una cierta masa, lo que tendría implicaciones profundas para la cosmología y la física en general: esta masa adicional en el universo podría suponer que el universo no siga expandiéndose indefinidamente sino que acabe por contraerse. Aunque existen distintas interpretaciones, algunos científicos consideran que la información sobre neutrinos obtenida de la supernova SN 1987A apoya la idea de que el neutrino tiene masa.

Mesón

Nombre que recibe cada una de las partículas elementales sometidas a interacciones fuertes, de espín nulo o entero y carga bariónica nula.
Los mesones, identificados por Powell en 1947 en los rayos cósmicos y cuya existencia había sido postulada por Yukawa en 1935, son partículas inestables, de masa generalmente comprendida entre la de los electrones y la de los neutrones. Los más estables, cuya vida media es del orden de la cienmillonésima de segundo, son los piones y los kaones.

domingo, 16 de enero de 2011

PARTÍCULAS SUBATÓMICAS

A principios del siglo XX, se realizó el descubrimiento de unas partículas subatómicas.
  • Electrón: Se encuentra en la corteza; su masa aproximadamente es de 9,1 . 10-31 kg, casi nula. Tienen carga negativa.
  • Protón: Tiene carga positiva igual en magnitud a la carga negativa del electrón. Se encuentran en el núcleo y su masa es de 1,6 . 10-27 kg, aproximadamente 1836 veces la del electrón. particulasEl número atómico de un elemento indica el número de protones que tiene en el núcleo. Por ejemplo el núcleo del átomo de hidrógeno contiene un único protón.
  • Neutrón:Su masa es igual que la del protón, y a los dos se les puede denominar nucleones. No poseen carga. Y se encuentran en el núcleo.
Estas experiencias hicieron que uno de los postulados de la teoría de Dalton se modificara.
El átomo, aunque muy estable, dejaba de ser indivisibble y homogéneo.

ATOMO

Es la unidad más pequeña posible de un elemento químico. En la filosofía de la antigua Grecia, la palabra " átomo" se empleaba para referirse a la parte de materia más pequeño que podía concebirse. Esa "partícula fundamental", por emplear el término moderno para ese concepto, se consideraba indestructible. De hecho, átomo significa en griego "no divisible". El conocimiento del tamaño y la naturaleza del átomo avanzó muy lentamente a lo largo de los siglos ya que la gente se limitaba a especular sobre él.
Con la llegada de la ciencia experimental en los siglos XVI y XVII (véase química), los avances en la teoría atómica se hicieron más rápidos. Los químicos se dieron cuenta muy pronto de que todos los líquidos, gases y sólidos pueden descomponerse en sus constituyentes últimos, o elementos. Por ejemplo, se descubrió que la sal se componía de dos elementos diferentes, el sodio y el cloro, ligados en una unión íntima conocida como compuesto químico. El aire, en cambio, resultó ser una mezcla de los gases nitrógeno y oxígeno
Teoría de Dalton
John Dalton, profesor y químico británico, estaba fascinado por el rompecabezas de los elementos. A principiosdel siglo XIX estudió la forma en que los diversos elementos se combinan entre sí para formar compuestos químicos. Aunque muchos otros científicos, empezando por los antiguos griegos, habían afirmado ya que las unidades más pequeñas de una sustancia eran los átomos, se considera a Dalton como una de las figuras más significativas de la teoría atómica porque la convirtió en algo cuantitativo. Dalton mostró que los átomos se unían entre sí en proporciones definidas. Las investigaciones demostraron que los átomos suelen formar grupos llamados moléculas. Cada molécula de agua, por ejemplo, está formada por un único átomo de oxígeno (O) y dos átomos de hidrógeno(H) unidos por una fuerza eléctrica denominada enlace químico, por lo que el agua se simboliza como HOH o H2O. Véase Reacción química.
Todos los átomos de un determinado elemento tienen las mismas propiedades químicas. Por tanto, desde un punto de vista químico, el átomo es la entidad más pequeña que hay que considerar. Las propiedades químicas de los elementos son muy distintas entre sí; sus átomos se combinan de formas muy variadas para formar numerosísimos compuestos químicos diferentes. Algunos elementos, como los gases nobles helio y argón, son inertes; es decir, no reaccionan con otros elementos salvo en condiciones especiales. Al contrario que el oxígeno, cuyas moléculas son diatómicas (formadas por dos átomos), el helio y otros gases inertes son elementos monoatómicos, con un único átomo por molécula.

miércoles, 12 de enero de 2011

La Materia

Se denomina materia a todo aquello que posee masa y ocupa un lugar en el espacio; todos los cuerpos se constituyen de materia, en una porción limitada. La materia posee propiedades físicas, como la densidad, el peso, y el volumen; y propiedades químicas.
La materia está formada por iones, átomos, y moléculas. Las moléculas están constituidas por átomos, los cuales a su vez, están conformados por protones (carga positiva), electrones (carga negativa), y neutrones (carga neutra). Un ión es un átomo o un grupo de átomos, que se caracteriza por conservar una carga eléctrica determinada.
Existen tres estados de la materia: el estado sólido, el estado líquido, y el estado gaseoso. Los cuerpos que están en estado sólido tienen partículas que se mantienen muy cerca unas de otras, y en consecuencia, el volumen y la forma están bien definidos. Las partículas halladas en los cuerpos en estado líquido tienen una mayor distancia entre sí, que las del estado sólido, y es por ello que si bien los líquidos poseen un volumen definido, su forma no es concreta; por ejemplo: si pasamos el líquido de una botella a un vaso, éste adquiere la forma del vaso, y si luego lo ponemos nuevamente en la botella, se adaptará otra vez a la forma de la botella. Un cuerpo en estado gaseoso tiene partículas muy distanciadas entre sí, que se mueven rápidamente y en cualquier dirección y sentido; en consecuencia, la forma y el volumen de los gases son indefinidos, por ello se adecuan a la forma y volumen recipiente en donde están contenidos.