jueves, 25 de noviembre de 2010

METALES

Metal se usa para denominar a los elementos químicos caracterizados por ser buenos conductores del calor y la electricidad, poseen alta densidad, y son sólidos en temperaturas normales (excepto el mercurio); sus sales forman iones electropositivos (cationes) en disolución.
La ciencia de materiales define un metal como un material en el que existe un solape entre la banda de valencia y la banda de conducción en su estructura electrónica (enlace metálico). Esto le da la capacidad de conducir fácilmente calor y electricidad, y generalmente la capacidad de reflejar la luz, lo que le da su peculiar brillo. En ausencia de una estructura electrónica conocida, se usa el término para describir el comportamiento de aquellos materiales en los que, en ciertos rangos de presión y temperatura, la conductividad eléctrica disminuye al elevar la temperatura, en contraste con los semiconductores.
El concepto de metal refiere tanto a elementos puros, así como aleaciones con características metálicas, como el acero y el bronce. Los metales comprenden la mayor parte de la tabla periódica de los elementos y se separan de los no metales por una línea diagonal entre el boro y el polonio. En comparación con los no metales tienen baja electronegatividad y baja energía de ionización, por lo que es más fácil que los metales cedan electrones y más difícil que los ganen.
En astrofísica se llama metal a todo elemento más pesado que el helio.
Propiedades
Los metales poseen ciertas propiedades físicas características, entre ellas son conductores de la electricidad. La mayoría de ellos son de color grisáceo, pero algunos presentan colores distintos; el bismuto (Bi) es rosáceo, el cobre (Cu) rojizo y el oro (Au) amarillo. En otros metales aparece más de un color; este fenómeno se denomina policromismo.
Otras propiedades serían:
  • Maleabilidad: capacidad de los metales de hacerse láminas al ser sometidos a esfuerzos de compresión.
  • Ductilidad: propiedad de los metales de moldearse en alambre e hilos al ser sometidos a esfuerzos de tracción.
  • Tenacidad: resistencia que presentan los metales a romperse al recibir fuerzas bruscas (golpes, etc.)
  • Resistencia mecánica: capacidad para resistir esfuerzo de tracción, comprensión, torsión y flexión sin deformarse ni romperse.
Suelen ser opacos o de brillo metálico, tienen alta densidad, son dúctiles y maleables, tienen un punto de fusión alto, son duros, y son buenos conductores (calor y electricidad).
Estas propiedades se deben al hecho de que los electrones exteriores están ligados sólo ligeramente a los átomos, formando una especie de mar (también conocido como mar de Drude) que los baña a todos, que se conoce como enlace metálico (véase semiconductor).
La ciencia de materiales define un metal como un material en el que existe un traslape entre la banda de valencia y la banda de conducción en su estructura electrónica (enlace metálico). Esto le da la capacidad de conducir fácilmente calor y electricidad, y generalmente la capacidad de reflejar la luz, lo cual le da su peculiar brillo.
Los metales tienen ciertas propiedades físicas características: a excepción del mercurio son sólidos a condiciones ambientales normales, suelen ser opacos y brillantes, tener alta densidad, ser dúctiles y maleables, tener un punto de fusión alto, ser duros, y ser buenos conductores del calor y electricidad. Estas propiedades se deben al hecho de que los electrones exteriores están ligados sólo ligeramente a los átomos, formando una especie de mar (también conocido como mar de Drude), que se conoce como enlace metálico.
Mediante la teoría del mar de Drude podemos explicar por que los metales son tan buenos conductores del calor y la electricidad, es necesario comprender la naturaleza del enlace entre sus átomos.
Un primer intento para explicar el enlace metálico consistió en considerar un modelo en el cual los electrones de valencia de cada metal se podían mover libremente en la red cristalina ; de esta forma, el retículo metálico se considera constituido por un conjunto de iones positivos (los núcleos rodeados por su capa de electrones) y electrones (los de valencia), en lugar de estar formados por átomos neutros.
En definitiva un elemento metálico se considera que está constituido por cationes metálicos distribuidos regularmente e inmersos en un “mar de electrones” de valencia deslocalizados, actuando como un aglutinante electrostática que mantiene unidos a los cationes metálicos.
El modelo de mar de electrones permite una explicación cualitativa sencilla de la conductividad eléctrica y térmica de los metales. Dado que los electrones son móviles, se puede trasladar desde el electrodo negativo al positivo cuando el metal se somete al efecto de un potencial eléctrico. Los electrones móviles también pueden conducir el calor transportando la energía cinética de una parte a otra del cristal. El carácter dúctil y maleable de los metales está permitido por el hecho de que el enlace deslocalizado se extiende en todas las direcciones; es decir, no está limitado a una orientación determinada, como sucede en el caso de los sólidos de redes covalentes.
Cuando un cristal metálico se deforma, no se rompen enlaces localizados; en su lugar, el mar de electrones simplemente se adapta a la nueva distribución de los cationes, siendo la energía de la estructura deformada similar a la original. La energía necesaria para deformar un metal como el litio es relativamente baja, siendo, como es lógico, mucho mayor la que se necesita para deformar un metal de transición, porque este último posee muchos más electrones de valencia que son el aglutinante electrostático de los cationes.
Mediante la teoría del mar de electrones se pueden justificar de forma satisfactoria muchas propiedades de los metales, pero no es adecuada para explicar otros aspectos, como la descripción detallada de la variación de la conductividad entre los elementos metálicos.
Los metales pueden formar aleaciones entre sí y se clasifican en:
  • Ultraligeros: Densidad en g/cm³ inferior a 2. Los más comunes de este tipo son el magnesio y el berilio.
  • Ligeros: Densidad en g/cm³ inferior a 4,5. Los más comunes de este tipo son el aluminio y el titanio.
  • Pesados: Densidad en g/cm³ superior a 4,5. Son la mayoría de los metales


1 comentario:

  1. fijaste yo no sabia que tenian tantas propiedades los metales jeje, aunque es bueno saerlo para que no reprobemos examenes y entendamos las clases...Karen Perez Ramos

    ResponderEliminar